El uso de técnicas de inteligencia artificial en los sistemas de datos de enfermería: Scoping Review
Resumen
Introducción. La inteligencia artificial y el aprendizaje automático son tecnologías que ayudan a descubrir patrones en los datos que pueden informar la toma de decisiones clínicas. La Asociación de Enfermeras Registradas de Ontario ha utilizado técnicas de inteligencia artificial para ayudar a comprender las prácticas clínicas que generan impacto y las estrategias de implementación. El objetivo de esta revisión es descubrir la adaptación e implementación de diversas técnicas de inteligencia artificial y aprendizaje automático en varios entornos sanitarios, utilizando diferentes sistemas de datos que almacenan datos relacionados con la enfermería. Metodología. En marzo de 2022, se realizó una revisión de alcance para buscar literatura revisada por pares utilizando los siguientes términos: «enfermería», «inteligencia artificial», «sistemas de datos», «estadística» y «datos agregados». Se excluyeron los estudios si no eran relevantes para la enfermería, utilizaban análisis cualitativos o de métodos mixtos, si eran artículos de revisión bibliográfica y no se centraban en la inteligencia artificial o en el uso de datos a nivel de paciente. Resultados. Se recuperó un total de 2,627 artículos, de los cuales 1,518 quedaron tras la eliminación de duplicados. Tras la revisión de títulos y resúmenes, quedaron 1,347 artículos. Posteriormente, con la revisión del texto completo, quedaron 13 estudios. Las técnicas de inteligencia artificial utilizadas por los sistemas de datos sanitarios incluyen, entre otras, la regresión, las redes neuronales, la clasificación y los métodos basados en gráficos. Discusión. Existe un vacío en la aplicación de métodos de inteligencia artificial en los sistemas de datos que evalúan el impacto de la implementación de buenas prácticas en enfermería. Se necesitan más sistemas de datos que empleen técnicas de inteligencia artificial para apoyar la evaluación de buenas prácticas en enfermería y otras profesiones de la salud. Conclusiones. Se recuperaron diversas técnicas de inteligencia artificial en sistemas de datos que almacenan datos relacionados con la enfermería. Sin embargo, se necesitan más sistemas de datos e investigación en este ámbito.
Referencias bibliográficas
McCarthy J, Minsky ML, Rocheste, N, Shannon CE. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Mag [Internet]. 2006;27(4):12-14. doi:10.1609/aimag.v27i4.1904
2. Fetzer JH. What is Artificial Intelligence? Artificial Intelligence: Its Scope and Limits. Springer Link [Internet]. 1990;4(1):3–27. doi:https://doi.org/10.1007/978-94-009-1900-6
Robert N. How artificial intelligence is changing nursing. Nurs Manag [Internet]. 2019;50(9):30-39. doi:10.1097/01.NUMA.0000578988.56622.21
Registered Nurses’ Association of Ontario. Nursing & Compassionate Care in the Age of Artificial Intelligence: Engaging the Emerging Future [Internet]. Canada:RNAO;2020. Available from: https://rnao.ca/sites/rnao-ca/files/RNAO-AMS_Report-Nursing_and_Compassionate_Care_in_the_Age_of_AI_Final_For_Media_Release_10.21.2020.pdf
Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int [Internet]. 2021;21(1):270. doi: 10.1186/s12935-021-01981-1
Malik-Paras A, Pathania M, Vyas-Kumar R. Overview of artificial intelligence in medicine. J Family Med Prim Carec. 2019;8(7):2328-2331. doi: 10.4103/jfmpc.jfmpc_440_19
Ahmad S, Jenkins M. Artificial Intelligence for Nursing Practice and Management: Current and Potential Research and Education. CIN-Comput Inform Nurs [Internet]. 2022;40(3):139-144. doi: 10.1097/CIN.0000000000000871
Ronquillo CE, Peltonen LM, Pruinelli L, Chu CH, Bakken S, Beduschi A, et al. Artificial intelligence in nursing: Priorities and opportunities from an international invitational think-tank of the Nursing and Artificial Intelligence Leadership Collaborative. J Adv Nurs [Internet]. 2021;77(9):3707-3717. doi: 10.1111/jan.14855
Ackoff RL. From data to wisdom. Journal of applied systems analysis [Internet]. 1989;16:3-9. Available from: https://scholar.google.com/scholar?q=Ackoff%20R.L.%2C%20From%20data%20to%20wisdom%2C%20Journal%20of%20Applied%20Systems%20Analysis%2C%2016%2C%201989%3A3-9
Harrison AM, Herasevich V, Gajic O. Automated Sepsis Detection, Alert, and Clinical Decision Support: Act on It or Silence the Alarm? Crit Care Med [Internet]. 2015;43(8):1776-1777. doi: 10.1097/CCM.0000000000001099
Teng AK, Wilcox AB. A Review of Predictive Analytics Solutions for Sepsis Patients. Appl Clin Inform [Internet]. 2020;11(3):387-398. doi: 10.1055/s-0040-1710525
Cato KD, McGrow K, Rossetti SC. Transforming clinical data into wisdom: Artificial intelligence implications for nurse leaders. Nurs Manage [Internet]. 2020;51(11):24-30. doi: 10.1097/01.NUMA.0000719396.83518.d6
Registered Nurses’ Association of Ontario. Best Practice Spotlight Organizations (BPSO). Transforming Nursing Through Knowledge [Internet]. Canada:RNAO;2023. Available from: https://rnao.ca/bpg/bpso
Gómez-Díaz OL, Esparza-Bohórquez M, Jaimes-Valencia ML, Granados-Oliveros LM, Bonilla-Marciales A, Medina-Tarazona C. Experiencia en la implantación y consolidación de las Guías de Buenas Prácticas de la Registered Nurses' Association of Ontario (RNAO) en el ámbito clínico y académico en Colombia. Enferm Clin [Internet]. 2020;30(3):145-154. doi: 10.1016/j.enfcli.2019.11.013
Moreno-Casbas T, González-María E, Albornos-Muñoz L, Grinspun D. Getting guidelines into practice: lessons learned as Best Practice Spotlight Organization host. Int J Evid Based Healthc [Internet]. 2019;17:S15-S17. doi:10.1097/XEB.0000000000000178
Higuchi KS, Davies B, Ploeg J. Sustaining guideline implementation: A multisite perspective on activities, challenges and supports. J Clin Nurs [Internet], 2017;26(23-24):4413-4424. doi: 10.1111/jocn.13770
Del Rio-Martínez P, López-García M, Nieto-Martínez C, Cabrera-Cabrera MA, Harillo-Acevedo D, Mengibar-Carrillo A, et al. Aplicación y evaluación de la Guía de buenas prácticas: lactancia materna. Enferm Clin [Internet]. 2020;30(3):168-175. doi:10.1016/j.enfcli.2020.03.016
Saiz-Vinuesa MD, Albornos-Muñoz L, Fernández-Núñez ML, López-García M, Moreno-Casbas T, González-Sánchez JA. Resultados de la implantación de la Guía de valoración y manejo del dolor en Centros Comprometidos con la Excelencia en Cuidados (CCEC®) en España. Enferm Clin [Internet]. 2020;30(3):212-221. doi:10.1016/j.enfcli.2020.04.002
Rolin-Gilman C, Fournier B, Cleverley K. Implementing Best Practice Guidelines in Pain Assessment and Management on a Women's Psychiatric Inpatient Unit: Exploring Patients' Perceptions. Pain Manag Nurs [Internet]. 2017;18(3):170-178. doi:10.1016/j.pmn.2017.03.002
Monsonís-Filella B, Gea-Sánchez M, García-Martínez E, Folgera-Arnau M, Gutiérrez-Vilaplana JM, Blanco-Blanco J. Mejora de la valoración del riesgo y la prevención de las lesiones por presión durante la implantación de una Guía de buenas prácticas clínicas. Enferm Clin [Internet]. 2021;31(2):114-119. doi:10.1016/j.enfcli.2020.10.027
Campbell KE, Woodbury MG, Houghton PE. Implementation of best practice in the prevention of heel pressure ulcers in the acute orthopedic population. Int Wound J [Internet]. 2010;7(1):28-40. doi:10.1111/j.1742-481X.2009.00650.x
Singh M, Hynie M, Rivera T, Macisaac L, Glandman A, Cheng A. An evaluation study of the implementation of stroke best practice guidelines using a Knowledge Transfer Team approach. Can J Neurosci Nurs [Internet]. 2015;37(1):24-33. Available from: https://scholar.google.com/scholar_lookup?title=An+evaluation+study+of+the+implementation+of+stroke+best+practice+guidelines+using+a+knowledge+transfer+team+approach&author=M+Singh&author=M+Hynie&author=T+Rivera&publication_year=2015&journal=Can+J+Neurosci+Nurs&pages=24-33&pmid=26152100
Morales-Romero A, González-María E, Ramos-Ramos MA, Hidalgo-López L, Zurita-Muñoz AJ, Quiñoz-Gallardo MD, et al. Implantación de la valoración y el cuidado de los adultos en riesgo de ideación y comportamiento suicida: una Guía de la Registered Nurses' Association of Ontario (RNAO). Enferm Clin [Internet]. 2020;30(3):155-159. doi:10.1016/j.enfcli.2019.10.028
Barhorst S, Prior RM, Kanter D. Implementation of a best-practice guideline: Early enteral nutrition in a neuroscience intensive care unit. J Parenter Enter Nutr [Internet]. 2023;47(1):87-91. doi:10.1002/jpen.2411
Grinspun, D, Bajnok, I. Transforming nursing through knowledge: Best practices for guideline development, implementation science, and evaluation. [Internet]. Indianapolis (US):Sigma Theta Tau International;2018. Available from: https://scholar.google.com/scholar_lookup?title=Transforming+nursing+through+knowledge:+Best+practices+for+guideline+development,+implementation+science,+and+evaluation&author=I.+Bajnok&author=D.+Grinspun&author=H.+McConnell&author=B.+Davies&publication_year=2018&
Donabedian A. Evaluating the quality of Medical Care. Milbank Q [Internet]. 2005;83(4):691-729. doi: 10.1111/j.1468-0009.2005.00397.x
Arksey H, O'Malley L. Scoping Studies: Towards a Methodological Framework. Int J Soc Res Methodol [Internet]. 2005;8(1):19-32. doi: 10.1080/1364557032000119616
Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement Sci [Internet]. 2010;5:69. doi:10.1186/1748-5908-5-69
Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med [Internet]. 2018;169(7):467-473. doi:10.7326/M18-0850
Singla S, Medeiros C, Howitt L, Burt A, Nizum N, Naik S, et al. A Scoping Review Protocol on the Use of Artificial Intelligence Techniques in Nursing Data Systems. Open Science Framework [Internet]. 2023. doi: https://doi.org/10.17605/OSF.IO/YNX76
EndNote [Internet]. India;2023. Available from: https://endnote.com/
DistillerSR [Internet]. Ontario;2023. Available from: https://www.distillersr.com/
Lee, J. Statistics, descriptive. International encyclopedia of human geography [Internet]. 2020;13-20. doi: 10.1016/b978-0-08-102295-5.10428-7
Elo S, Kyngäs H. The qualitative content analysis process. J Adv Nurs [Internet]. 2008;62(1):107-115. doi: 10.1111/j.1365-2648.2007.04569.x
Lowry AW, Futterman CA, Gazit AZ. Acute vital signs changes are underrepresented by a conventional electronic health record when compared with automatically acquired data in a single-center tertiary pediatric cardiac intensive care unit. J Am Med Inf Assoc [Internet]. 2022;29(7):1183-1190. doi: 10.1093/jamia/ocac033
Huang ZA, Zhu Z, Yau CH, Tan KC. Identifying Autism Spectrum Disorder From Resting-State fMRI Using Deep Belief Network. IEEE Trans Neural Netw Learn Syst [Internet]. 2021;32(7):2847-2861. doi:10.1109/TNNLS.2020.3007943
Simmons S, Wier G, Pedraza A, Stibich M. Impact of a pulsed xenon disinfection system on hospital onset Clostridioides difficile infections in 48 hospitals over a 5-year period. BMC Infect Dis [Internet]. 2021;21(1):1084. doi: 10.1186/s12879-021-06789-y
Magliano DJ, Chen L, Islam RM, Carstensen B, Gregg WE, Pavkov ME, et al. Trends in the incidence of diagnosed diabetes: a multicountry analysis of aggregate data from 22 million diagnoses in high-income and middle-income settings. Lancet Diabetes Endocrinol [Internet]. 2021;9(4):203-211. doi: 10.1016/S2213-8587(20)30402-2
Ramallo-González AP, González-Vidal A, Skarmeta AF. CIoTVID: Towards an Open IoT-Platform for Infective Pandemic Diseases such as COVID-19. Sensors [Internet]. 2021;21(2):484. doi: 10.3390/s21020484
Jung YS, Kim YE, Go DS, Yoon SJ. Projecting the prevalence of obesity in South Korea through 2040: a microsimulation modelling approach. BMJ Open [Internet]. 2020;10(12):e037629. doi: 10.1136/bmjopen-2020-037629
Slijepcevic D, Zeppelzauer M, Schwab C, Raberger AM, Breiteneder C, Horsak B. Input representations and classification strategies for automated human gait analysis. Gait Posture [Internet]. 2020;76:198-203. doi: 10.1016/j.gaitpost.2019.10.021
Ward MA, Stanley A, Deeth LE, Deardon R, Feng Z, Trotz-Williams LA, et al. Methods for detecting seasonal influenza epidemics using a school absenteeism surveillance system. BMC Public Health [Internet]. 2019;19(1):1232. doi: 10.1186/s12889-019-7521-7
Rashmi R, Prasad K, Udupa CBK. BCHisto-Net: Breast histopathological image classification by global and local feature aggregation. Artif Intell Med [Internet]. 2021;121:102191. doi:10.1016/j.artmed.2021.102191
Shea CM, Weiner BJ, Belden CM. Using Latent Class Analysis to Identify Sophistication Categories of Electronic Medical Record Systems in U.S. Acute Care Hospitals. Soc Sci Comput Rev [Internet]. 2013;31(2):208-20. doi: 10.1177/0894439312448726
Wagenaar BH, Gimbel S, Hoek R, Pfeiffer J, Michel C, Manuel JL, et al. Effects of a health information system data quality intervention on concordance in Mozambique: time-series analyses from 2009-2012. Popul Health Metr [Internet]. 2015;13(1):9. doi: 10.1186/s12963-015-0043-3
Solimini AG, D'Addario M, Villari P. Ecological correlation between diabetes hospitalizations and fine particulate matter in Italian provinces. BMC Public Health [Internet]. 2015;15(1):708. doi: 10.1186/s12889-015-2018-5
Sanchez D, Dubay D, Prabhakar B, Taber DJ. Evolving Trends in Racial Disparities for Peri-Operative Outcomes with the New Kidney Allocation System (KAS) Implementation. J Racial Ethn Health Disparities [Internet]. 2018;5(6):1171-1179. doi: 10.1007/s40615-018-0464-3
Atzori L, Iera A, Morabito G. The Internet of Things: A survey. Comput Netw [Internet]. 2010;54(15):2787-2805. doi: 10.1016/j.comnet.2010.05.010
von Gerich H, Moen H, Block LJ, Chu CH, DeForest H, Hobensack M, et al. Artificial Intelligence-based technologies in nursing: A scoping literature review of the evidence. Int J Nurs Stud [Internet]. 2022;127:104153. doi: 10.1016/j.ijnurstu.2021.104153
Rubin D, White E, Bailer A, Gregory EF. Roles of Registered Nurses in Pediatric Preventive Care Delivery: A Pilot Study on Between-office Variation and Within-office Role Overlap. J Pediatr Nurs [Internet]. 2020;52:5-9. doi:10.1016/j.pedn.2020.01.012
Descargas
Derechos de autor 2023 MedUNAB

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |